Synthetic studies of baricitinib

DING Ruoyang, TANG Chunlei

Shanghai Medical & Pharmaceutical Journal ›› 2024, Vol. 45 ›› Issue (5) : 73-76.

PDF(1395 KB)
PDF(1395 KB)
Shanghai Medical & Pharmaceutical Journal ›› 2024, Vol. 45 ›› Issue (5) : 73-76.
PHARMACEUTICAL R&D

Synthetic studies of baricitinib

Author information +
History +

Abstract

Objective: To improve the synthetic route of Janus kinase inhibitor baricinib (1). Methods: 3- (cyanomethylene) azocyclobutane-1-carboxylic acid tert-butyl ester (2) was deprotected to obtain the intermediate 2-(3-azocyclobutanylidene) acetonitrile hydrochloride (3), which was then subjected to sulfonation reaction to obtain 2-[1-(ethylsulfonyl)-3-azocyclobutanylidene] acetonitrile (4), followed by Michael addition reaction to obtain 1-(ethylsulfonyl)-3-[4-(4,5,5-tetramethyl-1,3,2-dioxocyclopentane-2-yl)-1H-pyrazole-1-yl]-3-azocyclobutane acetonitrile (5). Finally, a coupling reaction was carried out with 4-chloro-7H-pyrrolo[2,3-d] pyrimidine to obtain 1. Results & Conclusion: The total yield was 63.6% with the purity 99.9% (HPLC area normalization method). The structures of the target end product and key intermediates were confirmed to be correct by MS and 1H-NMR. The starting materials used in this method are inexpensive and readily available and the post-treatment of the reaction is simple. The new route has a high overall yield and is suitable for large-scale preparation, and can provide reference for the production of baricitinib and the synthesis research of its derivatives.

Key words

baricitinib / Janus kinase inhibitor / process improvement

Cite this article

Download Citations
DING Ruoyang, TANG Chunlei. Synthetic studies of baricitinib[J]. Shanghai Medical & Pharmaceutical Journal, 2024, 45(5): 73-76
JAK是一个由4种酪氨酸受体激酶组成的家族,通过与信号转导子和转录蛋白激活子的相互作用,在细胞因子受体信号通路中发挥关键作用。JAK1和JAK2的抑制可导致JAK-STATS信号通路阻断,进而抑制各种白介素、干扰素和生长因子等炎症因子的转录[1]。巴瑞替尼(baricitinib, 1图1)的化学名为1-(乙基磺酰基)-3-[4-(7H-吡咯并[2,3-d]嘧啶-4-基)-1H-吡唑-1-基]氮杂环丁烷-3-乙腈,是由礼来制药与Incyte制药共同研发的选择性口服Janus激酶(JAK1/2)抑制剂[2-3]1于2017年首次在欧盟上市,随后被FDA批准在美国上市,用于治疗类风湿关节炎[4-5],其针对JAK1和JAK2的IC50值分别达到5.9和5.7 nmol/L[6]。2022年,1又先后被FDA批准用于COVID-19重症以及斑秃的治疗[7-8],同时,1还有多个适应证处于临床研究阶段,未来潜力十分巨大[9]。本研究对1的合成工艺进行了研究并加以改进,探索出一条简洁高效的合成路线,以期为1及其结构类似物的合成研究提供参考。
图1 1的新合成路线

Full size|PPT slide

1 合成路线

Rodgers等[2]报道的1的原研路线是由3-氧代氮杂环丁烷-1-甲酸叔丁酯为起始原料,与氰甲基膦酸二乙酯发生Horner-Emmons反应后脱除掉Boc保护基,接着与乙基磺酰氯反应得中间体2-[1-(乙基磺酰基)-3-氮杂环丁亚基]乙腈(4)。中间体4与4-(1H-吡唑-4-基)-7-[2-(三甲基甲硅基)乙氧基]甲基-7H-吡咯并[2,3-d]嘧啶发生迈克尔加成,最后脱掉SEM保护基得1,总收率21.0%。该合成路线制备关键中间体的步骤较长,原料氰甲基二磷酸二乙酯价格较高,需要使用大量氢化钠,工艺成本较高,存在一定安全风险,合成效率有待提高。综合已报道的合成路线,我们对各步反应条件与试剂进行了探索,优化改进了1的合成工艺,以高产率高纯度合成了1图1),原料3-(氰基亚甲基)氮杂环丁烷-1-甲酸叔丁酯(2)脱Boc得到中间体2-(3-氮杂环丁基亚基)乙腈盐酸盐(3);3经磺酰化反应得到4;再与4-吡唑硼酸频哪醇酯发生迈克尔加成反应得到1-(乙基磺酰基)-3-[4-(4,4,5,5-四甲基-1,3,2-二氧硼杂环戊烷-2-基)-1H-吡唑-1-基]-3-氮杂环丁烷乙腈(5);最后与4-氯-7H-吡咯并[2,3-d]嘧啶发生Suzuki偶联反应得到1。优化后的工艺路线不仅收率和纯度更高,而且具备生产成本低、反应条件温和、后处理简便适合大量制备与生产等优点。

2 合成实验

2.1 主要试剂与仪器

质谱采用LCMS-80质谱仪测定(日本岛津公司);化合物纯度采用LC1260 色谱仪测定(安捷伦科技有限公司);1H-NMR谱采用Bruker AVII-400 MHz核磁共振仪测定[德国Bruker公司,四甲基硅烷(TMS)为内标]。实验所用试剂均为市售分析纯或化学纯,未进一步纯化处理。

2.2 合成步骤

2.2.1 3的合成

0℃下将3-(氰基亚甲基)氮杂环丁烷-1-甲酸叔丁酯(5 g,25.7 mmol)溶于HCl的甲醇溶液(4 mol/L,30 mL)中,随后至室温下反应4 h,反应液减压蒸干溶剂,析出固体,加入石油醚30 mL,搅拌,抽滤,滤饼于40 ℃真空干燥后得黄色固体3.1 g,产率92.2%。1H-NMR(400 MHz,DMSO-d6δ:9.98(s,1H),5.98(s,1H),4.87(s,2H),4.79(s,2H),3.17(s,1H)。

2.2.2 4的合成

0℃下将中间体3(3 g,23.0 mmol)混悬于乙腈(40 mL)中,滴加N,N-二异丙基乙胺(N,N-diisopropylethylamine,DIPEA)(8.9 g,69.0 mmol),搅拌20 min后,缓慢滴加乙基磺酰氯(3.25 g,25.3 mmol),室温下反应4 h。反应液真空蒸发除去乙腈,加水40 mL,二氯甲烷60 mL萃取,无水硫酸钠干燥,过滤,真空浓缩得棕色固体3.9 g,产率91.0%,无需纯化直接用于下一步反应。ESI-MS (m/z):203.1 [M+NH4]+1H-NMR(400 MHz,DMSO-d6δ:8.35(s,1H),7.77(s,1H),4.45(d,J=8.8 Hz,2H),4.15(d,J=8.8 Hz,2H),3.59(s,2H),3.20(q,J=7.2 Hz,2H),1.27(s,12H),1.23(t,J=7.2 Hz,3H)。

2.2.3 5的合成

室温下将中间体4(3 g, 1 eq)和4-吡唑硼酸频哪醇酯(4-pyrazoleboronic acid pinacol ester)(3.1 g, 1 eq)溶于乙腈(40 mL)中,加入DBU(1,8-二氮杂双环[5.4.0]十一碳-7-烯)(4.9 g, 2 eq),室温反应8 h。反应液真空蒸发除去乙腈,加入水40 mL,乙酸乙酯60 mL萃取,无水硫酸钠干燥,过滤,真空浓缩后得淡黄色固体5.8 g,产率95%,无须纯化直接用于下一步反应。1H-NMR(400 MHz,DMSO-d6δ:8.35(s,1H),7.77(s,1H),4.45(d,J=8.8 Hz,2H),4.15(d,J=8.8 Hz,2H),3.59(s,2H),3.20(q,J=7.2 Hz,2H),1.27(s,12H),1.23(t,J=7.2 Hz,3H)。

2.2.4 1的合成

氮气保护下,将中间体5(5 g,1 eq),4-氯-7H-吡咯并[2,3-d]嘧啶(2 g,1 eq),碳酸铯(10.7 g,2.5 eq),四(三苯基膦)钯(0.3 g,0.02 eq)溶于二氧六环(75 mL)和水(15 mL)的混合溶剂中,回流反应10 h。反应液加入50 mL水,乙酸乙酯50 mL萃取,干燥,减压蒸馏除去溶剂,经硅胶柱纯化二氯甲烷-甲醇,体积比(20∶1)纯化,真空浓缩后得淡黄色固体3.9 g,产率79.9%,纯度99.9%。[HPLC面积归一化法,色谱柱为Horizon C18柱(4.6 mm×250 mm,5 μm);流动相A为体积分数0.1%的三氟乙酸水溶液,流动相B为乙腈(梯度洗脱:0~1 min B 10%~20%,1~11 min B 20%~40%,11~11.2 min B 40%~95%,11.2~13.2 min B 95%,13.2~13.5 min B 95%~5%,13.5~15 min B 5%);检测波长:254 nm;流速:1.0 mL/min;柱温:40 ℃。ESI-MS(m/z):372.2 [M+H]+1H-NMR(400 MHz,DMSO-d6δ:8.93(s,1H),8.71(s,1H),8.47(s,1H),7.61~7.63(m,1H),7.08~7.09(m,1H),4.60(d,J=8.8 Hz,2H),4.24(d,J=8.8 Hz,2H),3.69(s,2H),3.23(q,J=7.2 Hz,2H),1.25(t,J=7.2 Hz,3H)。

3 结果

3.1 合成起始原料的选择

在本文提出的路线中,考虑到原料价格相差不大,直接以中间体2作为起始原料,节约成本的同时将收率从原研路线的21.0%提升至63.7%。

3.2 合成方法优化

3.2.1 中间体3的合成方法优化

在合成中间体3时,采用三氟乙酸-二氯甲烷体系脱除Boc保护基会导致N-叔丁基酰胺副产物的生成,使得反应产率降低,纯化困难。本工艺路线采用盐酸-甲醇体系脱除Boc保护基,避免了副产物的生成,反应液直接真空蒸除溶剂即可获得较纯粗品。

3.2.2 中间体5的合成方法优化

在合成中间体5时,反应温度过高会导致硼酸酯的破坏,使后处理变得繁琐。于是本路线将反应条件优化为室温反应8 h的方法,该方法无需柱层析纯化,反应液简单加水萃取、干燥、蒸除溶剂后即为较纯粗品。

3.2.3 1的合成方法优化

本研究经过探索反应条件发现,该步反应采用二氧六环与水体积比为5∶1的混合溶剂作为反应溶剂,碳酸铯做碱的反应效果最好,产率可达80%。

4 讨论

本研究改进了1的合成方法,改进的具体内容为:用中间体3-(氰基亚甲基)氮杂环丁烷-1-甲酸叔丁酯作为起始原料,缩短了合成周期,降低了生产成本;采用盐酸甲醇脱除叔丁氧羰基保护基,使后处理更迅速,条件更温和;采用价格相对低廉的4-吡唑硼酸频哪醇酯和4-氯-7H-吡咯并[2,3-d]嘧啶做为合成砌块,降低了合成成本,避免了过多的保护脱保护反应,提高了整体收率;避免了危险试剂氢化钠的使用,有利于工业生产;中间体纯化简便,仅在终产物合成时进行一次柱层析纯化,提高了合成效率。

References

[1]
Papp KA, Menter MA, Raman M, et al. A randomized phase 2b trial of baricitinib, an oral Janus kinase (JAK) 1/JAK2 inhibitor, in patients with moderate to severe psoriasis[J]. Br J Dermatol, 2016, 174(6): 1266-1276.
Plaque psoriasis is a chronic and often debilitating skin disorder and proinflammatory cytokines are known to play a key role in the disease process.To evaluate the safety and efficacy of baricitinib, an oral Janus kinase (JAK) 1/JAK2 inhibitor, in patients with moderate-to-severe psoriasis in a randomized, double-blind, placebo-controlled, dose-ranging phase 2b study.Patients were randomized (n = 271) to receive placebo or oral baricitinib at 2, 4, 8 or 10 mg once daily for 12 weeks (Part A). Dose adjustment for 12 additional weeks was based on percentage improvement in the Psoriasis Area and Severity Index (PASI) score. The primary end point was Psoriasis Area and Severity Index (PASI) 75% (PASI-75) at 12 weeks for North American patients (n = 238); secondary end points were safety and efficacy measures in the entire population.At week 12, more North American patients in the 8-mg (43%) and 10-mg (54%) baricitinib groups than in placebo group (17%; P < 0·05) achieved PASI-75. All baricitinib-treated groups had greater mean changes from baseline in their PASI scores (P < 0·05) at 12 weeks and (except 2 mg) had higher rates of PASI-50 than the placebo group; statistically significant PASI-90 responses were achieved in the 8-mg and 10-mg groups at 8 and 12 weeks. More than 81% of PASI-75 responders maintained their scores through 24 weeks. During Part A, study discontinuations due to adverse events (AEs) were 0%, 0%, 2·8%, 6·3% and 5·8% and treatment-emergent AE rates were 44%, 50%, 47%, 58% and 64% for placebo and 2-, 4-, 8- and 10-mg baricitinib groups, respectively. No opportunistic infections were observed in any treatment group. Dose-dependent changes in laboratory values were observed.Patients with moderate-to-severe psoriasis treated with baricitinib for 12 weeks achieved significant improvements in PASI-75.© 2016 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.
[2]
Incyte Corporation. Azetidine and cyclobutane derivatives as JAK inhibitors: WO2009114512[P]. 2009-09-17.
[3]
Al-Salama ZT, Scott LJ. Baricitinib: a review in rheumatoid arthritis[J]. Drugs, 2018, 78(7): 761-772.
Baricitinib (Olumiant) is an oral, targeted synthetic DMARD that inhibits JAK1 and JAK2, which are implicated in the pathogenesis of rheumatoid arthritis (RA). This novel, small molecule is approved for use as monotherapy, or in combination with methotrexate, for the treatment of adults with moderate to severe active RA who responded inadequately to or were intolerant of ≥ 1 DMARD. In pivotal multinational trials, once-daily baricitinib 4 mg, with/without methotrexate (± another csDMARD), improved the signs and symptoms of RA, disease activity and physical function in DMARD-naive patients and in patients with an inadequate response to methotrexate, csDMARDs or TNF inhibitors; baricitinib treatment also slowed structural joint damage in DMARD-naive patients and in those with an inadequate response to methotrexate and csDMARDs. Baricitinib plus methotrexate was more effective than adalimumab plus methotrexate in patients with an inadequate response to methotrexate. The onset of these benefits was generally rapid and sustained over time. Baricitinib was generally well tolerated during up to 5.5 years' treatment; the most commonly reported adverse drug reactions were upper respiratory tract infections, increased LDL cholesterol, nausea and thrombocytosis. Thus, once-daily baricitinib, as monotherapy or in combination with methotrexate, is an effective and generally well tolerated emerging treatment for patients with moderate to severe active RA who have responded inadequately to or are intolerant of ≥ 1 DMARD, and extends the options available for this population.
[4]
Markham A. Baricitinib: first global approval[J]. Drugs, 2017, 77(6): 697-704.
Baricitinib (Olumiant™) is an orally-administered, small-molecule, janus-associated kinase (JAK) inhibitor developed by Eli Lilly and Incyte Corporation for the treatment of rheumatoid arthritis (RA), atopic dermatitis and systemic lupus erythematosus. JAKs transduce intracellular signals from cell surface receptors for various cytokines and growth factors involved in inflammation and immune function, suggesting JAK inhibitors may be of therapeutic benefit in inflammatory conditions. In February 2017, baricitinib was approved in the EU, as monotherapy or in combination with methotrexate, for the treatment of moderate to severe active rheumatoid arthritis in adult patients who have responded inadequately to, or who are intolerant to one or more disease-modifying anti-rheumatic drugs (DMARDs). Regulatory approval to market baricitinib as a treatment for RA has also been sought in the USA and Japan. This article summarizes the milestones in the development of baricitinib leading to this first global approval for the treatment for moderate to severe active RA in adult patients who have responded inadequately to, or are intolerant to one or more DMARDs.
[5]
Fridman JS, Scherle PA, Collins R, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050[J]. Immunol, 2010, 184(9): 5298-5307.
[6]
Shi JG, Chen X, Lee F, et al. The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers[J]. J Clin Pharmacol, 2014, 54(12): 1354-1361.
[7]
Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease[J]. Lancet, 2020, 395(10223): e30-e31.
[8]
夏训明. 美国FDA批准巴瑞替尼(baricitinib)治疗斑秃[J]. 广东药科大学学报, 2022, 38(4): 22.
[9]
王素云, 王立峰. Janus激酶靶点药物国内外研发总览[J]. 中国药理学与毒理学杂志, 2022, 36(8): 619-633.
[10]
Xu J, Cai J, Chen J, et al. An efficient synthesis of baricitinib[J]. J Chem Res, 2016, 40(4): 205-208.
Abstract
A highly efficient method for the synthesis of baricitinib was developed. The starting material tert-butyl 3-oxoazetidine-1-carboxylate was converted to intermediate 2-(1-(ethylsulfonyl)azetidin-3-ylidene)acetonitrile via the Horner–Emmons reaction, deprotection of the N-Boc-group and a final sulfonamidation reaction. Then the nucleophilic addition reaction was carried out smoothly to afford the borate intermediate in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene under reflux. Finally, the desired compound baricitinib was obtained by the Suzuki coupling reaction of 4-chloro-7- H-pyrrolo[2,3- d]pyrimidine with the above borate intermediate. All compounds were characterised by IR, MS, 1H NMR and 13C NMR. The overall yield in this synthetic route was as high as 49%. Moreover, this procedure is straightforward to carry out, has low cost and is suitable for industrial production.
PDF(1395 KB)

114

Accesses

0

Citation

Detail

Sections
Recommended

/